Perturbation in eigenvalues of a symmetric tridiagonal matrix

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of symmetric tridiagonal interval matrices revisited

In this short note, we present a novel method for computing exact lower and upper bounds of a symmetric tridiagonal interval matrix. Compared to the known methods, our approach is fast, simple to present and to implement, and avoids any assumptions Our construction explicitly yields those matrices for which particular lower and upper bounds are attained.

متن کامل

A Parallel Algorithm for Computing the Eigenvalues of a Symmetric Tridiagonal Matrix

A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level wh...

متن کامل

The eigenvalues of a tridiagonal matrix in biogeography

We derive the eigenvalues of a tridiagonal matrix with a special structure. A conjecture about the eigenvalues was presented in a previous paper, and here we prove the conjecture. The matrix structure that we consider has applications in biogeography theory. 2011 Elsevier Inc. All rights reserved. 1. Main result and related work We prove the following theorem in this paper. Theorem 1. The (n + ...

متن کامل

Eigenvalues of tridiagonal matrix using Strum Sequence and Gerschgorin theorem

In this paper, computational efficient technique is proposed to calculate the eigenvalues of a tridiagonal system matrix using Strum sequence and Gerschgorin theorem. The proposed technique is applicable in various control system and computer engineering applications. KeywordsEigenvalues, tridiagonal matrix, Strum sequence and Gerschgorin theorem. I.INTRODUCTION Solving tridiagonal linear syste...

متن کامل

A Takagi Factorization of a Real Symmetric Tridiagonal Matrix

Complex symmetric matrices arise from many applications, such as chemical exchange in nuclear magnetic resonance and power systems. Singular value decomposition (SVD) reveals a great deal of properties of a matrix. A complex symmetric matrix has a symmetric SVD (SSVD), also called Takagi Factorization, which exploits the symmetry [3]. Let A be a complex symmetric matrix, its Takagi factorizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2005

ISSN: 0024-3795

DOI: 10.1016/j.laa.2004.07.005